anonymous
  • anonymous
A plane landing at PDX has to descend 1650ft over a diagonal distance of 9700ft. What is the angle of depression of the plane? help would be nicce<33
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{\text{ArcSin}[1650/9711]}{\pi }180 = 9.78261 \text{ Degrees} \]
anonymous
  • anonymous
oh gotcha thanks!
anonymous
  • anonymous
Sorry. Entered 9711 and it should have been 9700. Not much difference in the angle. \[\frac{\text{ArcSin}[1650/9700]}{\pi }180 = 9.79381 \text{ degrees} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thank you for the medal.
anonymous
  • anonymous
no prob<3
anonymous
  • anonymous
myininaya, Here's what I got: \[\text{Cos}\left[\text{ArcSec}\left[\frac{5}{4}\right]+\text{ArcSin}\left[\frac{1}{3}\right]\right]=-\frac{1}{5}+\frac{8 \sqrt{2}}{15}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.