anonymous
  • anonymous
Hey, how can I simplify this? ((sqrt(x))-(1/(sqrt(x)))/(1-(1/(sqrt(x))))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Owlfred
  • Owlfred
Hoot! You just asked your first question! Hang tight while I find people to answer it for you. You can thank people who give you good answers by clicking the 'Good Answer' button on the right!
anonymous
  • anonymous
\[(\sqrt{x}-1/\sqrt{x})/(1-1\sqrt{x)}\]
dumbcow
  • dumbcow
\[\frac{\sqrt{x}-\frac{1}{\sqrt{x}}}{1-\frac{1}{\sqrt{x}}}\] ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes, I need to simplify that to \[1+\sqrt{x}\]
anonymous
  • anonymous
I just don't know how :(
dumbcow
  • dumbcow
combine fractions on top first \[\sqrt{x} - \frac{1}{\sqrt{x}} = \frac{x-1}{\sqrt{x}}\]
dumbcow
  • dumbcow
then combine fractions on bottom \[1-\frac{1}{\sqrt{x}} = \frac{\sqrt{x}-1}{\sqrt{x}}\]
dumbcow
  • dumbcow
use rule when dividing fractions Flip and Multiply \[=\frac{x-1}{\sqrt{x}}*\frac{\sqrt{x}}{\sqrt{x}-1}\]
dumbcow
  • dumbcow
sqrt(x) cancel remember \[x^{2} -1 = (x-1)(x+1)\] so \[x-1 = (\sqrt{x}-1)(\sqrt{x}+1)\]
anonymous
  • anonymous
Wow Thank you so much.
dumbcow
  • dumbcow
your welcome
anonymous
  • anonymous
How do I place this as a "good answer"?
dumbcow
  • dumbcow
click on blue button to right of your name
anonymous
  • anonymous
?
dumbcow
  • dumbcow
where it says "0medals for this answerer"
dumbcow
  • dumbcow
maybe it doesnt show up for you yet it this first time on
anonymous
  • anonymous
Yeah, maybe.
dumbcow
  • dumbcow
heres one for you though
anonymous
  • anonymous
Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.