cherrilyn
  • cherrilyn
PROOF! of the sum a sub n........
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
cherrilyn
  • cherrilyn
Prove that if \[\sum_{}^{}a _{n} \] converges absolutely then \[\sum_{}^{} a _{n}^{2} \] also converges. Then show by giving a counterexample that \[\sum_{}^{} a _{n}^{2} \] need not converge if \[\sum_{}^{}a _{n} \] is only conditionally convergent.
watchmath
  • watchmath
How rigorous do you want the proof to be? Is it using epsilon-delta type of proof?
cherrilyn
  • cherrilyn
no..we just learned about harmonic, p-series, alternating harmonic...absolute and conditional convergence....... so I don't think that rigorous

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

watchmath
  • watchmath
Well, we can do the following: Since the first series is convergent, then there is an \M\) such that \(0\leq |a_n|<1\) for all \(n\geq M\) (think that if there are infinitely many terms that greater than 1, then the series diverges). But then \(a_n^2
watchmath
  • watchmath
Example: \[\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}\] is is conditionally convergent but \[\sum_{n=1}^\infty \frac{1}{n}\]is divergent.

Looking for something else?

Not the answer you are looking for? Search for more explanations.