anonymous
  • anonymous
The doubling period of a baterial population is 20 minutes. At time t = 120 minutes, the baterial population was 60000. What was the initial population at time t = 0 ? Find the size of the baterial population after 3 hours?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
t = 0, initial population = 60 000 / (2 * 6) = 5 000 3 hours = 180 minutes. so if it doubles every 20 minutes, then it'll be 5 000 * 2 * 9 = 90 000
anonymous
  • anonymous
your equation for growth is Pi*2^(t/20) where Pi is initial population and t is the time in minutes. t/20 is the number of 20 minute periods so you multiply by 2 that many times. We know after 120 minutes the pop is 60000. So we can solve for Pi Pi*2^6=60000 Pi=(1875/2) or approximately 938 after 3 hours (180 minutes) (1875/2)*2^(180/20)=1875/2*2^9=1875*2^8=480,000

Looking for something else?

Not the answer you are looking for? Search for more explanations.