anonymous
  • anonymous
Perform the indicated operations and simplify y-2/y-4-y+1/y+4+y-20/y^2-16 I got answer: 6/y+4
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
is this correct???
anonymous
  • anonymous
can u put the brackets?
anonymous
  • anonymous
(y-2/y-4)-(y+1/y+4)+(y-20/y^2-16) then ur ans is correct

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jhonyy9
  • jhonyy9
(y-2/y-4)-(y+1/y+4)+(y-20/y*2-16)=((y-2)(y+4)/(y*2-16)-((y+1)(y-4)/(y*2-16)+ +(y-20)/(y*2-16)=((y-2)(y+4)-(y+1)(y-4)+(y-20))/(y*2-16)=(y*2+2y-8- y*2+3y+4+y-20)/(y*2-16)=(6y-24)/(y-4)(y+4)=6(y-4)/(y-4)(y+4)=6/(y+4)
anonymous
  • anonymous
What's really missing here are the correct paranthesis for this problem :)
anonymous
  • anonymous
Finally, figured out how to get the equation editor to show the expression we are assuming properly: \[\frac{y-2}{y-4}-\frac{y+1}{y+4}+\frac{y-20}{y^2-16}\] = \[\frac{y-2}{y-4}-\frac{y+1}{y+4}+\frac{y-20}{(y+4)(y-4)}\] = \[\frac{(y-2)(y+4)}{(y-4)(y+4)}-\frac{(y+1)(y-4)}{(y+4)(y-4)}+\frac{y-20}{(y-4)(y+4)}\] = \[\frac{(y^2+4y-2y-8)-(y^2-4y+y-4)+(y-20)}{(y-4)(y+4)}\] = \[\frac{6y-24}{(y-4)(y+4)}\] = \[\frac{6(y-4)}{(y-4)(y+4)}\] = \[\frac{6}{y+4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.