anonymous
  • anonymous
(sqrt(r)-sqrt(s))/(sqrt(r)+sqrt(s)) Rationalize the denominator.
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

myininaya
  • myininaya
multiply by the bottom's conjugate the conjugate of a+b is a-b so the conjugate of sqrt(r)+sqrt(s) is sqrt(r)-sqrt(s)
myininaya
  • myininaya
if you multiply the bottom, you have to multiply the top though
myininaya
  • myininaya
\[\frac{\sqrt{r}-\sqrt{s}}{\sqrt{r}+\sqrt{s}}\frac{\sqrt{r}-\sqrt{s}}{\sqrt{r}-\sqrt{s}}=\frac{r-2\sqrt{r}{s}+s}{r-s}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
that sqrt should be over rs
anonymous
  • anonymous
Thank very much for showing me how to do this problem.
myininaya
  • myininaya
np to rationalize the denominator just multiply what you have in the bottom with the sign change in the middle (do it to top and bottom) does that make sense?
anonymous
  • anonymous
Yes, thank you very much:)
myininaya
  • myininaya
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.