anonymous
  • anonymous
How do I find the twelfth term of 5,8,11,14
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
That's an arithmetic progression. The formula for the nth term of an arithmetic progression is:\[u _{n}=a+(n-1)d\]Where a is the first term and d is common difference. So, to find the twelfth term of this sequence:\[u _{12}=a+(12-1)d=5+11\times3=38\]
amistre64
  • amistre64
its adding 3
amistre64
  • amistre64
A{n} = A{n-1} +3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
That's the recurrence relation but that's not particularly necessary here.
amistre64
  • amistre64
i dont operate on necessary lol
anonymous
  • anonymous
Ok thank you
anonymous
  • anonymous
its 3n + 2 :D( n = term) for n = 1(first term): 3 + 2 =5 for n= 2(second term): 6 + 2 = 8 for n=20(20th term) 60 + 2 = 62 kk?
anonymous
  • anonymous
just they way i solve is really easier
amistre64
  • amistre64
\(A_n = A_{n-1}+3\); and \(A_{n-1} = A_{n-2}+3\) \[A_n = A_{n-2}+3+3 \iff A_n=A_{n-2}+2(3)\] \[A_n = A_{n-r} + r(3)\] \(A_{n-r} = A_1;\) when \(r = n-1\) \[\] \(A_n = A_1 + (n-1)(3);\) and \(A_1 = 5\) \[A_{12} = 5 + (12-1)(3) = 38\] Thats how you learn it in discrete math ...
anonymous
  • anonymous
97 to go and then i open a bottle of champagne!
amistre64
  • amistre64
97..years? or seonds lol
anonymous
  • anonymous
if it happens when i am not here i will be sad
amistre64
  • amistre64
ill send a carrier pigeon just before it happens to let you know lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.