anonymous
  • anonymous
evaluate limit lim as x approaches 2 of (x-2)/(Sqrt x)-(Sqrt (4-x))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[(x-2)\over \sqrt{x}-\sqrt{4-x}\] right?
anonymous
  • anonymous
ty
anonymous
  • anonymous
o sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Did I rewrite the problem correctly?
anonymous
  • anonymous
yes
anonymous
  • anonymous
When you plug in 2 you get \[0 \over 0\], a indeterminate. SO we may apply L'Hopital Rule
anonymous
  • anonymous
or rationalize the denominator if you have not gotten to l'hopital yet
anonymous
  • anonymous
then cancel, plug in 2, and get the answer
anonymous
  • anonymous
i will write it if you like
anonymous
  • anonymous
manny are familiar with LHopital rule?
anonymous
  • anonymous
\[\frac{x-2}{\sqrt{x}-\sqrt{4-x}}=\frac{x-2}{\sqrt{x}-\sqrt{4-x}}\times \frac{\sqrt{x}+\sqrt{4-x}}{\sqrt{x}+\sqrt{4-x}}\]
anonymous
  • anonymous
sqrt(2) ans...
anonymous
  • anonymous
sqrt(2)= a.41421
anonymous
  • anonymous
\[=\frac{(x-2)(\sqrt{x}+\sqrt{x-4})}{2x-4}\]
anonymous
  • anonymous
\[=\frac{\sqrt{x}+\sqrt{4-x}}{2}\]
anonymous
  • anonymous
now replace x by 2 and get \[\frac{2\sqrt{2}}{2}=\sqrt{2}\]
anonymous
  • anonymous
ty for the answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.