anonymous
  • anonymous
∫(sinx)/x dx= (limits 0 to x)
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

watchmath
  • watchmath
The result can't be expressed in terms of elementary functions.
watchmath
  • watchmath
The result is Si(x) :D Check out here: http://press.princeton.edu/books/maor/chapter_10.pdf
amistre64
  • amistre64
Si(x) lol http://www.wolframalpha.com/input/?i=int%28sin%28x%29%2Fx%29dx+from+0+to+x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the solution can be written as an infinite sum too if you want.
anonymous
  • anonymous
\[\sum_{n=0}^{\infty}\frac{x^{2n+1}(-1)^{n}}{(2n+1)^{2}(2n)!}\]
anonymous
  • anonymous
use the series expansion of sin(x), divide out x, bring the integral into the summation. It is the same as Si(x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.