Evaluate the limit, if it exist lim as x approaches 1, (x^3-1)/(x^2-1).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Evaluate the limit, if it exist lim as x approaches 1, (x^3-1)/(x^2-1).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hint: exponents!
please show step by step thanks
3x/2x = 3/2

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i dont understand
it the general hospital rule...
ok factor top and bottom \[\frac{x^3-1}{x^2-1}=\frac{(x-1)(x^2+x+1)}{(x+1)(x-1)}\]
now cancel the x - 1 to get \[\frac{x^2+x+1}{x+1}\]
replace x by 1, get \[\frac{3}{2}\]
oooooh ok i tried the other way and thought that you could factor it out...im still trying to understand where the x^2+x +1 came from
this kind of problem tends to come before differentiation and therefore before l'hopital's rule
difference of two cubes! \[a^3-b^3=(a-b)(a^2+ab+b^2)\]
in your case a = x and b = 1 to give \[x^3-1=(x-1)(x^2+x+1)\]
so basically you were factoring it out
exactly
ok cool i knew that what the steps were...well thanks again for the help
btw if you replace x by 1 in the numerator you get 0 yes? this means the numerator MUST factor as (x-1) times something.
yea.. thats what i did but somehow did it wrong
it is not a miracle you can factor, it is a consequence of the fact that you get 0 if you replace x by 1. same as in the denominator
yea thats exactly what i did so i figure theres something more to it
thanks again your a life saver

Not the answer you are looking for?

Search for more explanations.

Ask your own question