a region in the plane is bounded by the graph of y=1/x, the x-axis, the line x=m and the line x=3m, m>0. the area of this region: a) is independent of m b) increases as m increases c) decreases as m increases d) decreases for all m<1/3 e) increases for all m<1/3

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

a region in the plane is bounded by the graph of y=1/x, the x-axis, the line x=m and the line x=3m, m>0. the area of this region: a) is independent of m b) increases as m increases c) decreases as m increases d) decreases for all m<1/3 e) increases for all m<1/3

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Interesting question! hold on .... :)
The are of the region is given by \[A(m)=\int_m^{3m}\frac{1}{x}\;dx=\int_0^{3m}(1/x)dx-\int_0^m (1/x)dx\] By the fundamental theorem of calculus \[A'(m)=\frac{1}{3m}\cdot 3-\frac{1}{m}=0\] So the area doesn't change with respect to m. a) is the answer.
thanks!:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question