• anonymous
\[T:X \rightarrow Y \] be a linear operator and \[dim X = dim Y = n < \infty \] Show that range \[R(T) = Y\] if and only if \[T^{-1}\] exist
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • mathteacher1729
You could go the linear algebra route (which you may not be allowed to do) and say something like: "since it's linear, the transformation can be represented by a square n x n matrix which, after row reduction to echelon form has a pivot in every row and every column thereby making the linear transformation one-to-one and onto." This seems too easy though... :-p Your prof might want you to work more directly from abstract set-point topological definitions.
  • anonymous
yes, this one seems too easy and not very detailed

Looking for something else?

Not the answer you are looking for? Search for more explanations.