x^2-4 FIND THE HOLES ------ x+1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

x^2-4 FIND THE HOLES ------ x+1

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is it "holes" or "poles"? if it is poles this thing has a pole at -1 because that is where the denominator is 0. i have never heard of it being called a "hole"
usually called vertical asymptote
yea vertical asymptote

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

or horizontal
ok vertical asymptote set denominator = 0 and solve
so long as the numerator is not also zero there, you have a vertical asymptote
SeeRed -- have you graphed this function?
in this case \[\frac{(x+2)(x-2)}{x+1}\]
^yes
denominator is 0 if x = -1 so it will have a vertical asymptote there. no horizontal asymptote because the degree of the numerator is bigger than the degree of the denominator
do you need to find the 'slant' asymptote as well?
no i have the the answer. thak for your help
welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question