anonymous
  • anonymous
find y' assuming that the equation deermines a differentiable function f such that y =f(x) y^2+1=x^2 3y topic: implicit differentiation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
y^2 +1 = x^2 sec y
amistre64
  • amistre64
3y or secy?
anonymous
  • anonymous
take the derivative of both sides wrt x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
2yy'=2x sec(y) +x^2 sec(y)tan(y)y'
anonymous
  • anonymous
solve for y' using algebra
anonymous
  • anonymous
amistre hello!
anonymous
  • anonymous
i think it was \[y^2=x^2\sec(y)\] yes?
amistre64
  • amistre64
howdy.... openstudys behaving bad tonight. i go to post and i get screenfreeze
anonymous
  • anonymous
me too!
amistre64
  • amistre64
2y y' = 2x3y + x^2 3 y' 2y y' -x^2 3 y' = 6xy y'(2y -3x^2) = 6xy y' = 6xy/(2y-3x^2)
anonymous
  • anonymous
y^2 + 1 = x^2 sec y satellite
anonymous
  • anonymous
so i used the product rule for the x^2 sec y part?
anonymous
  • anonymous
thanks guys
anonymous
  • anonymous
can you guys help me with the question i just posted
anonymous
  • anonymous
yes the product rule. and when you take the derivative of sec(y) make sure to put the y' at the end. i will write it out if you like let me kn ow
anonymous
  • anonymous
i can do it thank you
anonymous
  • anonymous
2yy' = (2x)(secy)+(secy'tany')(x^2) is it correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.