Find the answer. B needs to be by itself. (a+b)/2c = b+d

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the answer. B needs to be by itself. (a+b)/2c = b+d

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You want to solve for \(b\)?
yes!
And show your work, please!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

OK. Start by multiplying both sides by \(2c\) to get rid of the denominator. So, we will have \(a+b=(b+d)2c\). Opening the parenthesis gives \(a+b=2bc+2cd\). Since we're trying to solve for \(b\), we should combine all terms with \(b\) in one side and everything else on the other side. That gives \(b-2bc=2cd-a\). Take \(b\) as a common factor in the left hand side, you get \(b(1-2c)=2cd-a\). Finally divide both sides by \(1-2c\) you get \(b=\frac{2cd-a}{1-2c}\).
b = (a-2*c*d)/(2*c-1)
cross multiply then a+b =2c(b+d) then take b containing term on one side and rest on other side so b(2c-1) = a-2cd now divide both side by (2c-1) so u get b= (a-2cd)/(2c-1)
(a+b)/2c = b=d 2bc + 2cd = a + b .................. (multiply both side by 2c) 2bc - b = a - 2cd ...................... (changing side of b) b ( 2c - 1) = a - 2cd b = (a-2cd) / (2c - 1)
Everyone had good answers! Thanks, and I agree with them.
Well they all are actually the same :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question