anonymous
  • anonymous
Calculate Tan 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
watchmath
  • watchmath
0
anonymous
  • anonymous
Using Triangle with angle 0 ,Hypotenuse 12, and bottom Leg 10
anonymous
  • anonymous
Use pythagoras to find opposite leg 12 squared - 10 squres = 44 so root 44 therefore tan theta = (in your calculator) INV TAN root44/10

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I am assuming it is tan theta not tan zero as that would be something altogether different.
anonymous
  • anonymous
tan0=sin0/cos0=0
anonymous
  • anonymous
sin0=0 sin30=1/2 sin60=sqrt3/2 sin90=1 cos0=1 cos30=sin60=sqrt3/2 cos60=sin30=1/2 cos90=0 tan0=sin0/cos0=0 tan30=1/sqrt3 tan60=sqrt3 tan90=sin90/cos90=1/0\[\infty\]
anonymous
  • anonymous
i think this can be helpful to you
anonymous
  • anonymous
tan90=sin90/cos90=1/0=∞
anonymous
  • anonymous
Korcan, you have posted some pretty good things here but I still think we are looking at theta as opposed to zero.
anonymous
  • anonymous
hmm
anonymous
  • anonymous
Look at info regarding hypotenuse and leg length
anonymous
  • anonymous
is 0 in radians or degree
anonymous
  • anonymous
tan 0 = sin 0 / cos 0 = 0/1= 0
anonymous
  • anonymous
The length of the legs are: hypotenuse=12 , bottom leg=10. For the 3rd leg we have:\[\sqrt{12^2-10^2} = \sqrt{44}\] \[\tan(\theta)=\frac{OppositeLegLength}{AdjacentLegLength}\] So, if theta is opposite the 3rd leg , then:\[\tan(\theta)=\sqrt{44}/10\] Otherwise, theta is opposite the bottom leg, then: \[\tan(\theta)=10/\sqrt{44}\]
anonymous
  • anonymous
Going further - If theta is opposite the 3rd leg, then: \[\tan(\theta)=\frac{\sqrt{44}}{10} = \frac{\sqrt{4*11}}{10}=\frac{\sqrt{4}\sqrt{11}}{10}=\frac{2\sqrt{11}}{10}=\frac{\sqrt{11}}{5}\] Otherwise, theta is opposite the bottom leg, then: \[\tan(\theta)=\frac{5}{\sqrt{11}}\] If your original problem had a diagram, you can see whether theta is opposite the bottom leg or opposite the 3rd leg .

Looking for something else?

Not the answer you are looking for? Search for more explanations.