Find the value of y in the mod 9 system. 5 x y = 4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the value of y in the mod 9 system. 5 x y = 4

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

5y=4 y=4/5 what is mod 9 system if i may ask?
\[5y=4 \;\text{mod(9)}\] ???
modular system with a specific number of elements are analogous to the 12 oclock system

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

There is an algebraic way to solve these, but since there are only 9 elements, trial and error can also work. 5(1) = 5 mod(9) 5(2) = 10 = 1 mod(9) 5(3) = 15 = 6 mod(9) 5(4) = 20 = 2 mod(9) 5(5) = 25 = 7 mod(9) 5(6) = 30 = 3 mod(9) 5(7) = 35 = 8 mod(9) 5(8) = 40 = 4 (mod(9) ------ solution y = 8
made easier to understand you writing out...thx
what is that?
Modulo congruence \[a \cong b (mod\ c) \implies \exists k \in Z\ |\ {a-b \over c} = k \]
multiply, then divide the result by the indicated mod #, take the remainder. Most likely studied in beginning number theory, or abstract algebra, or cryptography.
Are you looking for solutions where 5y is congruent to 4 ? Or are you looking for solutions where 5y (mod 9) = 4?
Actually those would be the same since 4 mod 9 is 4.
:) I was just gonna ask about that!

Not the answer you are looking for?

Search for more explanations.

Ask your own question