Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

X+y = 2 2xy-(z^2)= find the interger solutions of the equation.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is it 2xy-z^2=0??
oh wait , forgot to type it out, no, 2xy-z^2=1
if it is so ..then 2xy=z^2+1 (x+y)^2=4 x^2+y^2+2xy=4 x^2+y^2+z^2=3 so plot the sphere with radius sqrt(3) and find the points which has integer (x,y,z) triplet

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

one such point is (1,1,1)
only this is the solution..no other points are there.
u can prove it by this way x+y>=2sqrt(xy) sqrt(xy)<=1 as x+y=2 xy<=1 2xy<=2 z^2+1<=2 z^2<=1 z=1 only integer.. so 2xy=1^2+1=2 xy=1 s0 x=1 y=1 the solution.. (1,1,1) is the only possible solutin
actually I have the solution to the question which is x+y=2 and 2xy-z^2=1 leads to 2(x-1)^2+z^2=1, hence interger solutions are (1,1,1) and (1,1,-1) but i dont really get it, preparing for a math test which im not par with.
ok....take my equation x^2+y^2+z^2=3 so it can be x^2=1, y^2=1, z^2=1 now x+y=2>0 so x,y>0 so x=y=1 but z^2=1 gives z=1,-1 so (1,1,1) and (1,1-1)
got it??
i get that z can be either -1 ,1 but how did you get x^2+y^2+z^2=3?
and also from second approach z^2<=1 z^2=1 z=1,-1 so 2xy=2 xy=1 and both x,y>0 so x=y=1
2xy=z^2+1 (x+y)^2=4 x^2+y^2+2xy=4 x^2+y^2+z^2=3

Not the answer you are looking for?

Search for more explanations.

Ask your own question