tad1
  • tad1
The derivative of an even function is an odd function. the derivative of an odd function is an even function. Prove these results from the limit definition of the derivative: lim(as x approaches zero) [f(x) - f(a)]/(x -a)
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Well it takes some math to prove that by that definition... However if you look at the rule f(x)=x^n then f'(x)=nx^(n-1) it's very clear. If you have the even function x^4 it's derivative is 4(x^3) that is an odd function. It's derivative is 12(x^2), an even function.
tad1
  • tad1
Unfortunately, the problem was to use the definition. but I think I've got it. thanks for trying/
anonymous
  • anonymous
Another way you could prove this easily is by using trigonometric terms and identities, i.e. if you solved this, \[\lim_{x \rightarrow 0} [\sin(x+h)-\sin (x)]/h\] you would get cos x out as the answer. The sine function is an odd function, cosine an even, so it would be proven by that.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
It comes from the definition of even and odd. If a function is even, f(x) = f(-x). (If it's odd, f(x) = -f(-x).) You can use the product rule, since f(-x) = f(-1 . x), so f' = (-1)' . x + x' . (-1) = -x' Since f'(x) = -f'(-x), then the derivative is an odd function. A similar argument can be used for odd functions.
anonymous
  • anonymous
I think ac7qz has the right idea, but it looks like there might be an error in the calculation.
anonymous
  • anonymous
Let f(x) be an odd function (f(x)=-f(-x)) $$f'(x_0)=\lim_{x \rightarrow x_0} \dfrac{f(x)-f(x_0)}{x-x_0}=\lim_{-x \rightarrow -x_0} \dfrac{-f(-x)+f(-x_0)}{-x_0-(-x)}=\lim_{y \rightarrow- x_0} \dfrac{-f(y)+f(-x_0)}{-x_0-y}= $$ $$ =\lim_{y \rightarrow- x_0} \dfrac{f(y)-f(-x_0)}{y-(-x_0)}=f'(-x_0) $$ So we proved that $$ f′(x_0)=f′(−x_0)$$ That means that the derivative of an odd function is even. Let f(x) be an even function (f(x)=f(-x)) $$f'(x_0)=\lim_{x \rightarrow x_0} \dfrac{f(x)-f(x_0)}{x-x_0}=\lim_{-x \rightarrow -x_0} \dfrac{f(-x)-f(-x_0)}{-x_0-(-x)}=\lim_{y \rightarrow- x_0} \dfrac{f(y)-f(-x_0)}{-x_0-y}= $$ $$ =-\lim_{y \rightarrow- x_0} \dfrac{f(y)-f(-x_0)}{y-(-x_0)}=-f'(-x_0) $$ So we proved that $$ f′(x_0)=-f′(−x_0)$$ That means that the derivative of an even function is odd. The only assumption we need is the existense of the derivatives of the regarded function in some area around f(x0) and f(-x0).
anonymous
  • anonymous
Can we not do this with the definition \[f'(-x)= \lim_{h \to 0}\frac{f(-x+h) - f(x)} {h} = \lim_{h \to 0}\frac{f(-(x-h)) - f(x)} {h} = \lim_{h \to 0}\frac{f((x-h)) - f(x)} {h}=\\ \lim_{-h \to 0}\frac{f((x-(-h)) - f(x)} {-h}= -\lim_{h \to 0}\frac{f((x+h)) - f(x)} {h}= \\-f'(x)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.