araffi
  • araffi
Hi, I am attempting to find the limit of x/10^x using L'Hopital's rule, and I know the answer should be 0, but I'm not sure how to get there.
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
well the L'Hopital's rule is simple: lim of f(x)/g(x) when x tends to zero or infinite is = samelimit of f'(x)/g'(x) You have the limit of x = infinite and the limit of 10^x = infinite so it's infinite/infinite But, the derivative of x is 1 and the derivative of 10^x is (10^x).log(10), then you have 1/(10^x).log(10). the limit of 1 is 1, and the limit of (10^x).log(10) is infinite. 1/infinite tends to 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.