anonymous
  • anonymous
How to evaluate (3^-3+3^-4)/3^-5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{3^{-3}+3^{-4}}{3^{-5}}\]?
anonymous
  • anonymous
yes
anonymous
  • anonymous
probably simplest to break it into two fractions \[\frac{3^{-3}}{3^{-5}}+\frac{3^{-4}}{x^{-5}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Where x is 3.
anonymous
  • anonymous
oh, okay let me try breaking it up
anonymous
  • anonymous
So it's 12. Thanks!
anonymous
  • anonymous
when you divide if the bases are the same you subtract the exponents. be careful when you subtract, because you are subtracting a Negative number. \[\frac{3^{-3}}{3^{-5}}=3^{-3-(-5)}=3^{-3+5}=3^2\]
anonymous
  • anonymous
12 is correct. Yes.
anonymous
  • anonymous
yes it is 12. good work
anonymous
  • anonymous
hello polpak!
anonymous
  • anonymous
\[\color{green}{\text{hello polpak}}\]
anonymous
  • anonymous
Hello there.

Looking for something else?

Not the answer you are looking for? Search for more explanations.