anonymous
  • anonymous
A 2g particle moving at 8 m/s makes a perfectly elastic head-on collision with a 1g particle at rest. Find the speed of the 2 g particle after collision.
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The smaller body will be sent off at 10.67 m/s and the larger body will reduce to 2.67 m/s
anonymous
  • anonymous
Assume A to be larger body and B to be smaller body. Let u be velocities before impact and v be velocities after impact. Now, by principle of conservation of momentum \[m_{a} * u_{a} +m_{b} * u_{b} = m_{a} * v_{a} +m_{b} * v_{b}\] and for perfectly elastic collision \[u_{a} + v_{a} = u_{b} + v_{b}\] Here, \[u_{b} = 0\] and \[u_{a} = 8 m/s\] Solving, you'll get two equations which give \[v_{a} = 2.667 m/s\] and \[v_{b} = 10.667 m/s\]
anonymous
  • anonymous
U can use this equation for the 2g particle: V(final)=(M'-M)V(initial)/M'+M V(final)=(2-1)*8/2+1=8/3m/s for the other u can use V(final)=2M'V/M'+M V(final)=2*2*8/2+1=32/3m/s

Looking for something else?

Not the answer you are looking for? Search for more explanations.