anonymous
  • anonymous
Find the area of an equilateral triangle (regular 3-gon) with the given measurement. 3-inch radius A = sq. in.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The 3-inch radius measurement they gave you is the radius of the circumscribed circle around the triangle. The good news is that there's an easy way to find the height of an equilateral triangle given this radius. The radius of the circumscribed circle of an equilateral trianlge is 2/3 the height. So, 3=(2/3)h. Solving for h, we get the height to be 9/2. We still need one more piece, though (unless you have learned trigonometric functions). We need the length of the base of the triangle. To find the base of an equilateral triangle given it's height, we multiply the height by \[2/\sqrt{3}\]So,\[(9/2)(2/\sqrt{3})=9/\sqrt{3}=3\sqrt{3}\]We can now use the A forumla for a triangle. \[A=(1/2)bh=(1/2)(3\sqrt{3})(9/2)=27\sqrt{3}/4\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.