Here's the question you clicked on:
heisenberg
does P = NP?
This problem has not been solved yet. Anyway most computer scientists believe they are not equal.
It is not. Did you mean the NP problem for algorithms such as GA
really, dudes! i know this is a subjective answer, but I was curious if anyone had their own opinion. "In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove."
I'll have to do some research, I'm fairly certain the scope of this problem is well beyond me xD
am not an expert in the field, but i think the answer its no. the key is in the np-complete problems, but its hard to believe someone found an algorithm that runs in polinomial for SAT for example
This is one of the great unresolved questions in theoretical computer science, and stands up there with the Riemann hypothesis and similar challenges as a mathematical challenge so profound that no one knows the best way to approach it yet. People's "subjective" opinions on the matter are of historical and social interest only. It may be (though it is unlikely) that the question of whether P=NP is independent of the currently accepted axioms of set theory (ZF), and thus there is no way to prove or disprove it within that framework. But as a proposition about computations it is still either true or false.