Here's the question you clicked on:
mathtard
Solve by completing the square x^2-14x=10
take half the coefficent of -14, it should be -7. The we have (x-7)^2 which equals=x^2-14x+49. That means you get: (x-7)^2=59
\[\large x^2-14x=10\] \[\large x^2-14x-10=0\] \[\large x^2-14x+49-49-10=0\] \[\large (x-7)^2-49-10=0\] \[\large (x-7)^2-59=0\] \[\large (x-7)^2=59\] \[\large x-7=\pm\sqrt{59}\] \[\large x=7\pm\sqrt{59}\]
x=7plus or mius sqrt59
\[x^2-14x=10\] \[(x-7)^2=10+7^2=59\] \[x-7=\pm\sqrt{59}\] \[x=7\pm\sqrt{59}\]