anonymous
  • anonymous
How I show that the eigenvalues of matrix A times matrix B is and BA are equal? That's to show eigenvals(AB)=eigenvals(BA).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://en.wikipedia.org/wiki/Characteristic_polynomial think it might be useful
anonymous
  • anonymous
From this, \[\det(AB-\lambda I)=0\] Since AB and BA are different matrices, I still find it strange that their eigenvalues would turn out the same. How is this so?
Zarkon
  • Zarkon
Suppose \[ABx=\lambda x\] then multiply by B \[BABx=\lambda Bx\] so \[BA(Bx)=\lambda (Bx)\] thus BA has the same eigenvalues as AB similarly AB has the same eigenvalues as BA.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
wow...this is smart... thanks a lot Zarkon!! :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.