Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

With the help of gauss theorem find the stream of the vector field W=[x^2/9.y^2/9,z^2/9] through the part of the cone surface x^2+y^2=2z closed by the deck z=3.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

gauss' theorem has to do with electrodynamics flux's. specify which theorem you are asking to use plz
the convergance theorem
i don't think gauss has a convergence theorem. not that a know of. he has a divergence theorem but it can't be used here.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes it's the divergence theorem
you're looking for stream, check physics forum?
ok, thanks
just do del dot W DV ∂(M)/∂x+∂(N)/∂y+∂(P)/∂z DV I would use sperical coordinates for this one its a triple integral looks like a lot of work but can be done. see "Stream" flow flux should all have the same meaning, saying that this feild is "FLOWING" through the cone.

Not the answer you are looking for?

Search for more explanations.

Ask your own question