anonymous
  • anonymous
Determine the nature of solutions of the equation x^2-3x+8=0
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
you need to check the discriminant - know what that is ?
anonymous
  • anonymous
no
anonymous
  • anonymous
are you familiar with the quadratic equation ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
use quadratic formula
anonymous
  • anonymous
no not at all.
anonymous
  • anonymous
ever seen this formula ? \[x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\]
anonymous
  • anonymous
http://en.wikipedia.org/wiki/Quadratic_equation
anonymous
  • anonymous
\[(-b \pm \sqrt{b^{2}-4ac})/2a\]
anonymous
  • anonymous
In general: ax^2+bx+c=0 In your case: a=1 (the coefficient of x^2) b=-3 (coefficient of x) c=8 Use these values and plug them into the discriminant (the thingy inside the square root). \[\Delta=b^2-4ac\] If the discriminant = 0, there is one real solution If the discriminant > 0, there are two real solutions If the discriminant < 0, there are no real solutions

Looking for something else?

Not the answer you are looking for? Search for more explanations.