anonymous
  • anonymous
find the integral of 1/root(-x^2 + 6x - 8) with explanations
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
thats the integral?
anonymous
  • anonymous
i got the information from here: :/ idk tho http://mathforum.org/library/drmath/view/64571.html
nikvist
  • nikvist
\[\int\frac{1}{\sqrt{-x^2+6x-8}}dx=\int\frac{1}{\sqrt{-x^2+6x-9+1}}dx=\int\frac{1}{\sqrt{1-(x-3)^2}}dx=\] \[=\arcsin{(x-3)}+C\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no the answer is the arcsin one by nikvist
dumbcow
  • dumbcow
Use completing the square \[\rightarrow \int\limits_{}^{} \frac{dx}{\sqrt{1-(x-3)^{2}}}\] ...yeah thats what i got
anonymous
  • anonymous
CAN YOU PLEASE EXPLAIN
anonymous
  • anonymous
he wants you to explain
nikvist
  • nikvist
\[\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin{x}+C\] basic integral
dumbcow
  • dumbcow
u = x-3 du = dx \[\rightarrow \int\limits_{}^{} \frac{du}{\sqrt{1-u^{2}}}\] u = sin(theta) du = cos(theta) \[\rightarrow \int\limits_{}^{}\frac{\cos(\theta)}{\sqrt{1-\sin^{2}(\theta)}}d \theta = \int\limits_{}^{}\frac{\cos(\theta)}{\sqrt{\cos^{2}(\theta)}}d \theta = \int\limits_{}^{}d \theta = \theta+C\] \[\theta = \sin^{-1}(u) = \sin^{-1}(x-3)\]
anonymous
  • anonymous
so automatically once i see such a question i should use trig substitutions ? what about this one 4/(4-x^2)
anonymous
  • anonymous
integral for arc sin is \[\int\limits_{}^{} du/\sqrt{a^2-u^2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.