anonymous
  • anonymous
find the integral of 1/root(-x^2 + 6x - 8) with explanations
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
thats the integral?
anonymous
  • anonymous
i got the information from here: :/ idk tho http://mathforum.org/library/drmath/view/64571.html
nikvist
  • nikvist
\[\int\frac{1}{\sqrt{-x^2+6x-8}}dx=\int\frac{1}{\sqrt{-x^2+6x-9+1}}dx=\int\frac{1}{\sqrt{1-(x-3)^2}}dx=\] \[=\arcsin{(x-3)}+C\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no the answer is the arcsin one by nikvist
dumbcow
  • dumbcow
Use completing the square \[\rightarrow \int\limits_{}^{} \frac{dx}{\sqrt{1-(x-3)^{2}}}\] ...yeah thats what i got
anonymous
  • anonymous
CAN YOU PLEASE EXPLAIN
anonymous
  • anonymous
he wants you to explain
nikvist
  • nikvist
\[\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin{x}+C\] basic integral
dumbcow
  • dumbcow
u = x-3 du = dx \[\rightarrow \int\limits_{}^{} \frac{du}{\sqrt{1-u^{2}}}\] u = sin(theta) du = cos(theta) \[\rightarrow \int\limits_{}^{}\frac{\cos(\theta)}{\sqrt{1-\sin^{2}(\theta)}}d \theta = \int\limits_{}^{}\frac{\cos(\theta)}{\sqrt{\cos^{2}(\theta)}}d \theta = \int\limits_{}^{}d \theta = \theta+C\] \[\theta = \sin^{-1}(u) = \sin^{-1}(x-3)\]
anonymous
  • anonymous
so automatically once i see such a question i should use trig substitutions ? what about this one 4/(4-x^2)
anonymous
  • anonymous
integral for arc sin is \[\int\limits_{}^{} du/\sqrt{a^2-u^2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.