anonymous
  • anonymous
find the integral of 1/root(x^2-4)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
|dw:1315245910188:dw|
myininaya
  • myininaya
let \[\sec(\theta)=\frac{x}{2}\]
myininaya
  • myininaya
\[2 \sec(\theta)=x => 2\sec(\theta)\tan(\theta) d \theta=dx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
\[\int\limits_{}^{}\frac{1}{\sqrt{(2\sec(\theta))^2-4}} 2\sec(\theta) \tan(\theta) d \theta \]
myininaya
  • myininaya
\[\frac{2}{\sqrt{4}}\int\limits_{}^{}\frac{\sec(\theta) \tan(\theta)}{\sqrt{\sec^2(\theta)-1}} d \theta \]
anonymous
  • anonymous
mmmmm the answer is ln[x + root(X^2 -4) ] + c
anonymous
  • anonymous
mmmmm the answer is ln[x + root(X^2 -4) ] + c .......negative 4
myininaya
  • myininaya
\[\int\limits_{}^{}\frac{\sec(\theta) \tan(\theta)}{\sqrt{\tan^2(\theta)}} d \theta\]
myininaya
  • myininaya
\[\int\limits_{}^{}\sec(\theta) d \theta =\int\limits_{}^{}\sec(\theta) \cdot \frac{\sec(\theta)+\tan(\theta)}{\sec(\theta)+\tan(\theta)} d \theta\] let \[u=\sec(\theta)+\tan(\theta)=>du=[\sec(\theta)\tan(\theta)+\sec^2(\theta)] d \theta\] so we have \[\int\limits_{}^{}\frac{du}{u}=\ln|u|+C\]
myininaya
  • myininaya
but \[u=\sec(\theta)+\tan(\theta)\]
myininaya
  • myininaya
so we have \[\ln|\sec(\theta)+\tan(\theta)|+C\] but we made the substition that \[\sec(\theta)=\frac{x}{2}\]
myininaya
  • myininaya
so if \[\sec(\theta)=\frac{x}{2}\] |dw:1315246444736:dw| so \[\tan(\theta)=\frac{\sqrt{x^2-4}}{2}\]
myininaya
  • myininaya
so we actually have \[\ln|\frac{x}{2}+\frac{\sqrt{x^2-4}}{2}|+C\]
myininaya
  • myininaya
\[\ln|\frac{x+\sqrt{x^2-4}}{2}|+C=\ln|x+\sqrt{x^2-4}|-\ln|2|+C\]
myininaya
  • myininaya
but ln(2) is just a constant so it can all be included in the C part so we could write \[\ln|x+\sqrt{x^2-4}|+K\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.