Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Show that for all integers m and n, with m ≠ +/-n, the integral from -π to π of cos(mθ)cos(nθ) dθ = 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
okay and we also know that \[\cos(m \theta - n \theta)=\cos(m \theta) \cos(n \theta)+\sin(m \theta) \sin(n \theta)\] so this means we have \[\sin(m \theta) \sin(n \theta)=\cos(m \theta-n \theta)-\cos(m \theta)\cos(n \theta)\] and remember that \[\cos(m \theta) \cos(n \theta)=\cos(m \theta+n \theta)+\sin(m \theta)\sin(n \theta) \] \[\cos(m \theta) \cos(n \theta)=\cos(m \theta+n \theta)+\cos(m \theta-n \theta)-\cos(m \theta)\cos(n \theta)\] \[2 \cos(m \theta) \cos(n \theta)= \cos(m \theta+n \theta)+\cos(m \theta-n \theta)\]
we are almost there now
\[\cos(m \theta) \cos(n \theta)= \frac{1}{2} (\cos(m \theta+n \theta)+\cos(m \theta-n \theta))\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so this means we have \[\frac{1}{2}\int\limits_{-\pi}^{\pi}(\cos([m+n] \theta)+\cos([m-n] \theta) d \theta\]
\[[\frac{1}{2}\frac{1}{m+n} \sin([m+n] \theta)+\frac{1}{2} \frac{1}{m-n}\sin([m-n] \theta)]_{-\pi}^{\pi}\]
i will assume m and n are integers
this means m+n is an integer and m-n is an integer sin(integer * pi) is 0 sin(integer * (-pi)) is 0 m+n can't be zero m-n can't be zero so the answer is 0 as long as m does not equal -n or m equals n
:)
in first part didnt u forget one sin(mt)sin(nt) ?
? go to the your post and read what i posted there
i put some more steps in the one i posted for you

Not the answer you are looking for?

Search for more explanations.

Ask your own question