Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

guys anyone knows mathematical induction?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
yep
sorry , i don't know
i hav a question can u help?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

fire away
ya sure so on writing ur question!!1
n-3^(2n+2)-8n-9 is divisible by 8.Prove
is ur question correct!!!!1
no srry
3^(2n+2)-8n-9 is divisible by 8.Prove
............
???
let p(n)=n-3^(2n+2)-8n-9 =8m (let m be any value) checking for p(1), lhs: p(1)= 3^(2+2) -8-9=81-17=64=8x8=8m =rhs therefore p(1)is true assume p(k)is true . =>3^(2k+2)-8k-9=8m \[=>3^{(2k)} = \frac{8m+8k+9}{3^{2}}\]-----(1) to prove :p(k+1)is true substitute k+1 in n in the given eq \[=>3^{2k+4}-8(k+1)-9= 3^{2k}.3^{4}-8k-17\]substitute (1) instead of 3^(2k) =>72m+64k+64= =>8(9m+8k+8) therefore p(k+1) is true by principal of mathematical induction , p(n) is true for all n belonging to natural numbers

Not the answer you are looking for?

Search for more explanations.

Ask your own question