anonymous
  • anonymous
what are two unit vectors that are orthogonal to both <1,-1,1> and <0,4,4>
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Cross product..
anonymous
  • anonymous
Im not getting the right answer for some reason
anonymous
  • anonymous
Normalize!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
can you show me the steps?
anonymous
  • anonymous
\[ \frac{v\times w}{||v\times w||} \]
anonymous
  • anonymous
I don't understand the denominator
anonymous
  • anonymous
I guess my question would be how do you normalize
anonymous
  • anonymous
Well if you have a vector v=(x,y,z) then \[ ||v|| := \sqrt{x^2+y^2+z^2} \]
Zarkon
  • Zarkon
\[\|\|=\sqrt{a^2+b^2+c^2}\]
anonymous
  • anonymous
ok, I got one of them. Would the other orthogonal vector just be B X A ?
anonymous
  • anonymous
Just take the negative!
anonymous
  • anonymous
Multiply by -1.
anonymous
  • anonymous
oh, you're right!
anonymous
  • anonymous
haha thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.