anonymous
  • anonymous
what is ripple factor of any waveform
MIT 6.002 Circuits and Electronics, Spring 2007
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
ripple factor is specified for waveforms containing ac and dc components... if Vrms= RMS value of ac component Vdc=DC value then Ripple factor= Vrms/Vdc
anonymous
  • anonymous
Actually, Ripple Factor = I'rms/Idc = V'rms/Vdc , where I'rms and V'rms are ripples . theoritically \[i = Imsin(wt) ; 0\le wt \le \pi\] \[i = 0 ; \pi \le wt \le2\pi\] \[I'rms = (1/2\pi) ( \int\limits_{0}^{2\pi} i^2 d(wt) ) ^{1/2}\] \[Idc = (1/2\pi) \int\limits_{0}^{2\pi} i d (wt)\] by solving \[I'rms / I dc\] we get the ripple factor like this Ripple factor of any wave form => r = \[\sqrt{(Irms/Idc)^2-1}\] thats all :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.