At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

use lhopitals rule which is \[\frac{\frac{d}{dx}[\sin(2x)]}{\frac{d}{dx}[\sin(3x)]}\]

when you do that you will simply get 2/3

so your limit will be 2/3

Not the answer you are looking for?

Search for more explanations.

show me the process. i never learned that in class.

what calculus class are you in?

using le'hopital rule ==> lim 3co(2x)/3cos(3x) = 2/3

calculus 1. Thanks.

using le'hopital rule ==> lim 3cos(2x)/3cos(3x) = 2/3

thank you,

Not the answer you are looking for?

Search for more explanations.