nubeer
  • nubeer
ax^2+bx-2=0 have 2 roots alpha and beta and question is. limx-->beta [(1-cos(ax^2+bx-2)/((ax^2+bx-2)^2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
if x goes to beta, then ax^2+bx-2 goes to 0 since beta is a root of ax^2+bx-2 so thats means we have 0/0 when we plug in beta we could use l'hospital's rule here \[\lim_{x \rightarrow \beta}\frac{0-(-\sin(ax^2+bx-2))(2ax+b)}{2(ax^2+bx-2)(2ax+b)}\]
myininaya
  • myininaya
\[\lim_{x \rightarrow \beta}\frac{\sin(ax^2+bx-2)}{2(ax^2+bx-2)}\]
myininaya
  • myininaya
but when we plug in beta we still have 0/0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
so we can use l'hosptial again
myininaya
  • myininaya
\[\lim_{x \rightarrow \beta}\frac{\cos(ax^2+bx-2)(2ax+b)}{2(2ax+b)}\]
myininaya
  • myininaya
\[\lim_{x \rightarrow \beta}\frac{\cos(ax^2+bx-2)}{2}=\frac{\cos(0)}{2}=\frac{1}{2}\]
nubeer
  • nubeer
wow dude ur answer is right but still have to think how u reach here
myininaya
  • myininaya
do you know l'hospital?
myininaya
  • myininaya
however you spell that dead math guy's name
nubeer
  • nubeer
hmmm ya i heard of it but never used it
myininaya
  • myininaya
so let me show you another way one sec
nubeer
  • nubeer
ok but i still ddnt get what ever u answer because of that sinx
myininaya
  • myininaya
let \[V(x)=ax^2+bx-2\] we are given \[V(\beta)=0\] so if x->beta, then V->0 so we have \[\lim_{V \rightarrow 0}\frac{1-\cos(V)}{V^2}\] \[=\lim_{V \rightarrow 0}\frac{1-\cos(V)}{V^2} \cdot \frac{1+\cos(V)}{1+\cos(V)}\] \[=\lim_{v \rightarrow 0}\frac{1-\cos^2(V)}{V^2(1+\cos(V)}=\lim_{V \rightarrow 0}\frac{\sin^2(V)}{V^2(1+\cos(V))}\] \[=\lim_{V \rightarrow 0}\frac{\sin^2(V)}{V^2} \cdot \frac{1}{1+\cos(V))}\] \[=1^2 \cdot \frac{1}{1+\cos(0)}=\frac{1}{1+1}=\frac{1}{2}\]
nubeer
  • nubeer
thanks man this thing really helped me out
myininaya
  • myininaya
thanks girl* :)
nubeer
  • nubeer
lol i am a boy. :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.