Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How do I find the eigenvectors of the following matrix?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[A=\left[\begin{matrix}1 & 2 \\ 2 & -2\end{matrix}\right]\]
\[Av = \lambda v\]
a=-6

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

first find eigenvalues :det(A - λI) = 0 λI - A = \[\left[\begin{matrix}1-λ & 2 \\ 2 & -2-λ\end{matrix}\right]\] so Det : (1−λ)(−2−λ) - 4 = 0 λ^2 - λ + 2λ -2 -4 = 0 λ^2 +λ -6 = 0 λ^2 +3λ - 2λ - 6 = 0 λ(λ+3) - 2(λ+3) (λ-2)(λ+3) = 0 λ=-3,2 now Av=λv Av = 2v v1+2v2 = 2v1 2v1 -2v2 = 2v2 any vector of the form : 2v2 = v1 Av = -3v v1 + 2v2 = -3v1 2v1 - 2v2 = -3v2 2v2 = -4v1 any vector of the form : v2 = -2v1
by the way .. the eigenvector cant be zero.
example for the eigenvectors are : 2v2 = v1 -> (2,1) v2 = -2v1 ->(-1,2)
please tell me if it is fine..
Sorry - I have actually left my books for a moment... I will definitely check this when I get back to them - thanks so much!!
Totally forgot about this! Thank you so much - that was perfect!
oh im glad that you answered eventually :)
Haha, later is better than never, right? :P Quick question, for the eigenvalue -3, is the final eigenvector\[v=\left(\begin{matrix}-2 \\ 1\end{matrix}\right)\] Since \[v_2=-2v_1\]??
if you take v1 = 1 then v2 = -2 (1,-2) its the opposite from yours
Oh I see, thanks!
So would the eigenspace of eigenvalue 2, be: \[span \left\{ \left(\begin{matrix}2 \\ 0\end{matrix}\right) ,\left(\begin{matrix}0 \\ 1\end{matrix}\right)\right\}\] or just \[span \left\{ \left(\begin{matrix}2 \\ 1\end{matrix}\right) \right\}\] Thanks for the ongoing help :)
Never mind, I got it :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question