derivative of secx derivative of secx @Mathematics

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

anybody can help me?
What's that supposed to mean?
a derivative?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

tan(x)sec(x) This are all very common derivatives... your book should have a table of them somewhere... and I would suggest just memorizing all of the trig derivatives and integrals, it will come in handy when you get to trig substitution integration.
ok.. sec(x) is the same as \[\frac{1}{\cos(x)}\] So use the quotient rule to find the derivative... \[\frac{\cos(x)(0) - 1(-\sin(x))}{\cos^2(x)}\] Simplify and you get \[\frac{\sin(x)}{\cos^2(x)}\] This can be written as \[\frac{1}{\cos(x)} * \frac{\sin(x)}{\cos(x)}\] Which is sec(x)tan(x)

Not the answer you are looking for?

Search for more explanations.

Ask your own question