Fools101
  • Fools101
Rules & Application of Exponents (8).^2/3 Rules & Application of Exponents (8).^2/3 @Mathematics
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Fools101
  • Fools101
please help!
anonymous
  • anonymous
|dw:1319565112059:dw|
anonymous
  • anonymous
XD

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
8 ^(2/3) = (8^2)^(1/3) =(64)^(1/3)=(4*4*4)(1/3) =4
anonymous
  • anonymous
= (cuberoot 8 ) ^2 = 2^2 = 4
anonymous
  • anonymous
When raising to a fractional exponent, the numerator is the exponent on the number or variable. The denominator is the root. So it would be the third/cubed root of 8^2. Or the cubed root of 64. You can do it either way. You can first square 8, or take the cubed root of it. In this case it's easier to first take the cubed root, then squaring the result.
Fools101
  • Fools101
kk but would it come out to be 1/4?
anonymous
  • anonymous
^(1/3) = cube root
anonymous
  • anonymous
no it is 2^2 = 4
Fools101
  • Fools101
oohh kk just making sure thank u Jimmyrep : )

Looking for something else?

Not the answer you are looking for? Search for more explanations.