anonymous
  • anonymous
ok integral of INT/limits 1 to 0/ (e^x)^2
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
rewrite?
anonymous
  • anonymous
\[\int_0^1 e^{x^2}dx\]
anonymous
  • anonymous
ah it is error function or something like that I can't do it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=integration+e^%28x^2%29+from+0+to+1
agreene
  • agreene
yeah, i think its like 1/2 sqrt(pi)*error(imaginary) or some such
anonymous
  • anonymous
yep. that's what my calcu says.. 1.462651746 xD
anonymous
  • anonymous
what is this now ?
anonymous
  • anonymous
nonono, (e^x)(e^x) or (e^x)^2, integrate that from 1 to 0
anonymous
  • anonymous
And I have a computer right in front of me as well as a ti-84+ so I dont want your calculator or wolfram alpha answers please :)
agreene
  • agreene
Oh, that is much simpler. (e^x)^2 = e^2x so: \[\int\limits_{0}^{1}e^{2x}dx=\frac{1}{2}e^2x\] take it to the limits: [1/2*e^(2)]-[1/2*e^(0)]=1/2e^2-1/2 factor it and you have: \[\frac{1}{2}(e^2-1)\]
anonymous
  • anonymous
oh you sure that (e^x)^2=e^2x?
agreene
  • agreene
yes, that is one of the properties of exponents
anonymous
  • anonymous
fsho

Looking for something else?

Not the answer you are looking for? Search for more explanations.