Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

zucchini Group Title

The top of a wheel of mass M and radius R is connected to a spring (at its equilibrium length) with spring constant k, as shown in Fig. 6.33. Assume that all the mass of the wheel is at its center. If the wheel rolls without slipping, what is the frequency of (small) oscillations? The top of a wheel of mass M and radius R is connected to a spring (at its equilibrium length) with spring constant k, as shown in Fig. 6.33. Assume that all the mass of the wheel is at its center. If the wheel rolls without slipping, what is the frequency of (small) oscillations? @MIT 8.01 Physics …

  • 2 years ago
  • 2 years ago

  • This Question is Closed
  1. arijit.mech Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1320493173057:dw| actually moi about the instantaneous center of the wheel is given by 0.5mr^2+m(2r)^2 =4.5mr^2 now d/dt(KE+PE+RE)=0 KE=kinetic energy=.5mv^2 PE=potential energy=.5KX^2 RE=ROTATIONAL ENERGY=.5IW^2

    • 2 years ago
  2. Vincent-Lyon.Fr Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Although this is 5 months old, it's still worth it correcting the few mistakes in the answer. KE : correct RE : zero because the problem states that we have a point-mass at the centre of the wheel. PE : the displacement of the end of the spring is twice that of the centre (no slipping) => PE = 1/2k(2x)²

    • 2 years ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.