anonymous
  • anonymous
when you derive for example 5ln(X^2 +2) why isnt product rule used? my buddy here says five is just a multiplier for derivative of lnf(x), why?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You can use that rule but it's not necessary.
anonymous
  • anonymous
where would you apply the product rule here?
anonymous
  • anonymous
isnt it 5*lnf(x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\begin{array}l\color{#FF0000}{\text{I}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{s}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{'}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{t}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{t}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{t}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{h}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{e}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{i}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{r}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{l}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{,}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{n}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{t}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{h}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{p}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{r}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{d}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{t}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{r}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{u}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{l}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{e}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{?}}\color{#0000FF}{\text{ }}\end{array}
anonymous
  • anonymous
beats me dude
anonymous
  • anonymous
You can apply that rule like this: \[\frac{d}{dt} 5\times \ln{(x^2+2)}+5\times\frac{d}{dt}\ln{(x^2+2)}\]
anonymous
  • anonymous
oh! ok. got it. they cansel.
anonymous
  • anonymous
...
anonymous
  • anonymous
Usually it's better to use the chain rule when you have a product of two non constant functions.
anonymous
  • anonymous
If you apply it to a product of a constant and a function you'll be loosing your time, but your result will be correct

Looking for something else?

Not the answer you are looking for? Search for more explanations.