Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

when you derive for example 5ln(X^2 +2) why isnt product rule used? my buddy here says five is just a multiplier for derivative of lnf(x), why?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
You can use that rule but it's not necessary.
where would you apply the product rule here?
isnt it 5*lnf(x)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\begin{array}l\color{#FF0000}{\text{I}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{s}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{'}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{t}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{t}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{t}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{h}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{e}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{i}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{r}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{l}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{,}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{n}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{t}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{h}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{p}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{r}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{d}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{t}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{r}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{u}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{l}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{e}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{?}}\color{#0000FF}{\text{ }}\end{array}
beats me dude
You can apply that rule like this: \[\frac{d}{dt} 5\times \ln{(x^2+2)}+5\times\frac{d}{dt}\ln{(x^2+2)}\]
oh! ok. got it. they cansel.
...
Usually it's better to use the chain rule when you have a product of two non constant functions.
If you apply it to a product of a constant and a function you'll be loosing your time, but your result will be correct

Not the answer you are looking for?

Search for more explanations.

Ask your own question