Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

mr.luna

  • 4 years ago

when you derive for example 5ln(X^2 +2) why isnt product rule used? my buddy here says five is just a multiplier for derivative of lnf(x), why?

  • This Question is Closed
  1. victorarana
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    You can use that rule but it's not necessary.

  2. agdgdgdgwngo
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    where would you apply the product rule here?

  3. mr.luna
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    isnt it 5*lnf(x)

  4. agdgdgdgwngo
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \begin{array}l\color{#FF0000}{\text{I}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{s}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{'}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{t}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{t}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{ }}\color{#FFE600}{\text{t}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{h}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{e}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{h}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{a}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{i}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{n}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{ }}\color{#00FF00}{\text{r}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{l}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{,}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{ }}\color{#FF7F00}{\text{n}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{t}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{ }}\color{#0000FF}{\text{t}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{h}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{e}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{p}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{r}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{o}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{d}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{u}}\color{#0000FF}{\text{ }}\color{#6600FF}{\text{c}}\color{#6600FF}{\text{ }}\color{#8B00FF}{\text{t}}\color{#8B00FF}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{ }}\color{#FF0000}{\text{r}}\color{#FF0000}{\text{ }}\color{#FF7F00}{\text{u}}\color{#FF7F00}{\text{ }}\color{#FFE600}{\text{l}}\color{#FFE600}{\text{ }}\color{#00FF00}{\text{e}}\color{#00FF00}{\text{ }}\color{#0000FF}{\text{?}}\color{#0000FF}{\text{ }}\end{array}

  5. mr.luna
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    beats me dude

  6. victorarana
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    You can apply that rule like this: \[\frac{d}{dt} 5\times \ln{(x^2+2)}+5\times\frac{d}{dt}\ln{(x^2+2)}\]

  7. mr.luna
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    oh! ok. got it. they cansel.

  8. agdgdgdgwngo
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ...

  9. victorarana
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Usually it's better to use the chain rule when you have a product of two non constant functions.

  10. victorarana
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    If you apply it to a product of a constant and a function you'll be loosing your time, but your result will be correct

  11. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy