anonymous
  • anonymous
: Linear Algebra: (Diagonalization) Let A = {{1,1},{0,1}}. Use the definition of the matrix exponential to compute e^A.
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
A = \[\left[\begin{matrix}1 & 1 \\ 0 & 1\end{matrix}\right]\]
anonymous
  • anonymous
Write A as S + N, where S is the identity, and N is the nilpotent matrix with only a 1 in the 1,2 position.
anonymous
  • anonymous
Okay, here's what I got before I posted this question: {{e, 1+ 2/2! + 3/3! + ... + n/n!},{0,e}}. The book says {{e,e},{0,e}}, but I don't get how 1+ 2/2! + 3/3! + ... + n/n! = e, lest I'm wrong on the row 1 col 2 entry.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
more scanning, one sec.
anonymous
  • anonymous
the idea is if you matrix isnt diagonalizable, you want to write it as the sum of a matrix that is, and a matrix that is nilpotent, which means that after some finite power, the matrix will be 0. Also, these matrices must commute.
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
hm, I really can't use the fact that A = S+N since our haven't gone over nilpotent matrices yet (or we won't at all), so here's what I did, haha I don't know how to go from here to {{e,e},{0,e}}.
1 Attachment
anonymous
  • anonymous
oh cool, so you came up with an idea of what A^n might be by observation, and used that, very clever :) To make that method a little more solid, prove your guess for A^n by Induction. Then nobody will have any problem with that solution :)
anonymous
  • anonymous
Something like this, its short, but it gives your argument more foundation :) very nice observation.
1 Attachment
anonymous
  • anonymous
oops forgot some 0's in there <.<
anonymous
  • anonymous
wow, thanks!
anonymous
  • anonymous
i hope they teach you about nilpotent matrices =/ thats really important when calculating matrix exponentials. In general, you might not be able to guess a formula for A^n if it isnt diagonalizable. thats why you need to be able to write it as S + N, where S is diagonalizable, and N is nilpotent, and S and N commute. If you are interested in that sorta stuff, look up the Jordan Canonical Form.

Looking for something else?

Not the answer you are looking for? Search for more explanations.