anonymous
  • anonymous
If a and b are positive numbers, find the maximum value of f(x)=x^a*(1-x)^b, 0 less than or equal to x less than or equal to 1. Your answer may depend on a and b. What is the maximum value?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
maximum value of: \[f(x)=x^a*(1-x)^b;\ 0\le x \le 1\]
amistre64
  • amistre64
\[f'(x)=ax^{(a-1)}(1-x)^b-x^ab(1-x)^{(b-1)}\] \[ax^{(a-1)}(1-x)^b-x^ab(1-x)^{(b-1)}=0\] solving this might get us some critical points
anonymous
  • anonymous
Critical point = a/(a+b)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Got the answer. It is (a/(a+b))^a(b/(a+b))^b
anonymous
  • anonymous
Thanks for helping
amistre64
  • amistre64
\[ax^{(a-1)}(1-x)^b=x^ab(1-x)^{(b-1)}\] \[ax^{(a-1)}x^{-a}(1-x)^b=b(1-x)^{(b-1)}\] \[ax^{-1}(1-x)^b=b(1-x)^{(b-1)}\] \[a=xb(1-x)^{(b-1)}(1-x)^{-b}\] \[a=xb(1-x)^{-1}\] \[\frac{a}{b}=\frac{x}{1-x}\] \[a-ax=bx\] \[a=bx+ax\] \[\frac{a}{b+a}=x\] looks to be that way if i did it right

Looking for something else?

Not the answer you are looking for? Search for more explanations.