anonymous
  • anonymous
If a and b are positive numbers, find the maximum value of f(x)=x^a*(1-x)^b, 0 less than or equal to x less than or equal to 1. Your answer may depend on a and b. What is the maximum value?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
maximum value of: \[f(x)=x^a*(1-x)^b;\ 0\le x \le 1\]
amistre64
  • amistre64
\[f'(x)=ax^{(a-1)}(1-x)^b-x^ab(1-x)^{(b-1)}\] \[ax^{(a-1)}(1-x)^b-x^ab(1-x)^{(b-1)}=0\] solving this might get us some critical points
anonymous
  • anonymous
Critical point = a/(a+b)?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Got the answer. It is (a/(a+b))^a(b/(a+b))^b
anonymous
  • anonymous
Thanks for helping
amistre64
  • amistre64
\[ax^{(a-1)}(1-x)^b=x^ab(1-x)^{(b-1)}\] \[ax^{(a-1)}x^{-a}(1-x)^b=b(1-x)^{(b-1)}\] \[ax^{-1}(1-x)^b=b(1-x)^{(b-1)}\] \[a=xb(1-x)^{(b-1)}(1-x)^{-b}\] \[a=xb(1-x)^{-1}\] \[\frac{a}{b}=\frac{x}{1-x}\] \[a-ax=bx\] \[a=bx+ax\] \[\frac{a}{b+a}=x\] looks to be that way if i did it right

Looking for something else?

Not the answer you are looking for? Search for more explanations.