Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

dakid91

  • 4 years ago

Use the double angle formula to rewrite the equation y = 4sin^2 (slashed zero) - 2.

  • This Question is Closed
  1. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    is the slashed zero theta?

  2. dakid91
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Yes.

  3. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    it reduces to \[y = -2 \cos(2\theta)\]

  4. dakid91
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Can you show me how it works?

  5. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    You need to simply use that cos(2A) = 1- 2 sin^2(A)

  6. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    so from this we take theta to be A

  7. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    if you rewrite the equation you gave in that form it becomes.. -2 + 4sin^2(A)

  8. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    from here we can factor out a -2 which leaves us with -2(1-2sin^2(A)) and you can see that the values under the parenthesis is just cos(2A) from the identity. So the answer you end up with after plugging in theta for A, is just -2cos(2Theta)

  9. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    do you understand?

  10. dakid91
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Yes. Thank you for giving a detailed explanation.

  11. tdabboud
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    yeah no problem, glad i could help

  12. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy