Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

I suddenly got very confused with something. Suppose I have a parametric equation like this: \[\begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix}sin( t)\\ cos(t) \end{bmatrix}\] Why is the tangent vector of this function simply just the derivative of the x and y like this: \[tangent \ vector=\begin{bmatrix} x'\\ y' \end{bmatrix}=\frac{\partial }{\partial t} \begin{bmatrix}sin( t)\\ cos(t) \end{bmatrix}= \begin{bmatrix}cos( t)\\ -sin(t) \end{bmatrix}\] Taking the derivative just give me the gradient of the equation. It is just the gradient and not the tangent line yet, isn't it?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

  • phi
I would not call it a tangent line i.e. a line that is tangent to the curve at the point. It is the tangent direction vector. It points in the correct direction, but it's not necessarily tangent to the curve.
oh yea...you are right. it is the the tangent direction vector. But what is the rationale behind that the gradient is simply the direction? The gradient is just the rate of change but how does it give that direction?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question