anonymous
  • anonymous
need help on the attachment @Calculus1
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
need help on the attachment @Calculus1
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
across
  • across
\[f(x)=2x^2\]
across
  • across
\[f'(x)=4x\implies f(1)=4,\]\[f(1)=2.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

across
  • across
\[y=4x-2.\]
across
  • across
\[f_{1}^{-1}(x)=\sqrt{\frac{1}{2}x}\]\[f_{2}^{-1}(x)=\frac{x+2}{4}\]
across
  • across
\[\int_{0}^{2}\int_{\sqrt{\frac{y}{2}}}^{\frac{y+2}{4}}dxdy\]
across
  • across
There it is. Can you evaluate that integral?
anonymous
  • anonymous
I believe so, you just have to separate both them right?
across
  • across
\[\frac{1}{4}\int_{0}^{2}ydy+\frac{1}{2}\int_{0}^{2}dy-\sqrt{\frac{1}{2}}\int_{0}^{2}\sqrt{y}dy\]yep
across
  • across
\[\frac{1}{8}\left[y^2\right]_{0}^{2}+\frac{1}{2}\left[y\right]_{0}^{2}-\frac{1}{3}\sqrt{2}\left[y^{\frac{3}{2}}\right]_{0}^{2}\]seems a bit tedious though, but it gives the right answer :/
across
  • across
There has got to be an easier method.
anonymous
  • anonymous
thanks again across, like the new pic of you
across
  • across
Thought it'd look more "professional." n_O Thank you.
anonymous
  • anonymous
"professional",lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.