explain how you can use the pattern for expanding a binomial to expand (x+y+z)^10

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

explain how you can use the pattern for expanding a binomial to expand (x+y+z)^10

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

This is going to be long a messy in practice although simple in theory. Consider first (x + (y+z) )^10. This is a binomial in x and (y+z). Expand this using standard binomial theory. Then you will need to expand all of the (y+z)^j terms.
To work a smaller example, consider (x+y+z)^3. Write this as (x + (y+z) )^3. By the binomial theorem this is equal to x^3 + 3x^2(y+z) + 3x(y+z)^2 + (y+z)^3 Now expand the (y+z) terms x^3 + 3x^2y + 3x^2z + 3xy^2 + 6xyz + 3xz^2 + y^3 + 3y^2z + 3yz^2 + z^3
I would just use the multinomial expansion

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

That too. Either way, it's going to be tedious calculation.
although perhaps it would result in a slightly neater arrangement of terms. x^3 + y^3 + z^3 + 3(x^2y + y^2z + z^2x + x^2z + y^2x + z^2y) + 6xyz

Not the answer you are looking for?

Search for more explanations.

Ask your own question