Find the function f given that it satisfies f''(x)=36x^2+24x and its graph has a horizontal tangent line at the point (0,1)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the function f given that it satisfies f''(x)=36x^2+24x and its graph has a horizontal tangent line at the point (0,1)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Find the anti-derivative 2 times.. So first \[f \prime (x) = 12x^3 + 12x^2 + C\]
f''(x)=3x^4+4x^3+c then what?
\[f(x) = 3x^4 + 4x^3 + Cx + D\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Question is how do I find D?
We need to find what Cx and what D is.. Im trying to think how to do that
We know that F(0)=1
Right which would make Cx = 1
So we have \[f(x) = 3x^4 + 4x^3 + x + D\]
I ment it would make C = 1.. not Cx
if you do that you graph does not have a horizontal tangent line at (0,1) So c=1
Thank you thou but I think I new how to do it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question