anonymous
  • anonymous
The area of the paper is 260 in2. Then 2 inch square is cut from each corner and folded up to make a box. The volume of the box is 288 in3 what are the dimensions of the paper for this to be true? How do i do this?
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Let x and y be the width and length of the uncut paper respectively. The area is given to be 260 sq inches, so\[x* y=260\]The length of the box width is x-2*2 because there are two each 2x2 inch squares cut out of each corner to make the box. The length of the box length is y-2*2 for the same reason. The box height will be 2 inches. The volume, 288 cubic inches, is equal to the product of the width*length*height or\[2(x-2*2)(y-2*2)= 288\]Solving the two simultaneous for x and y yields:\[\{x\to 13,y\to 20,x\to 20,y\to 13\} \]The uncut paper is 13 by 20 inches.
anonymous
  • anonymous
how did you solve them simultaneously?
anonymous
  • anonymous
x*y=260, y=260/x Replace y in the other equation with 260/x\[2(x-2*2)(y-2*2)=288\]\[2(x-2*2)\left(\frac{260}{x}-2*2\right)=288 \]\[552-\frac{2080}{x}-8 x-288=0\]Multiply each side by x and combine the resulting fractions.\[x\left(552-\frac{2080}{x}-8 x-288\right)= 0*x\]\[-8 \left(260-33 x+x^2\right)=0\]\[260 - 33 x + x^2 = 0 \]Use the binomial theorem or factor the LHS.\[(x-13)(x-20) =0 \]x=13 is the answer you want. Use y=260/x to find the corresponding y.

Looking for something else?

Not the answer you are looking for? Search for more explanations.